Deri Protocol Docs
HomeMiningFuturesOptions
  • Genesis
    • Getting Started
  • 📈Trading [Guide]
    • Deri Lite
      • Perpetual Futures
      • Everlasting Options
      • Power Perpetuals
    • Deri Pro
      • Perpetual Futures
      • Everlasting Options
      • Power Perpetuals
      • Gamma Swap
    • Arbitrage
  • 📶Mining [Guide]
    • AMM Liquidity Mining
    • DERI Liquidity Mining
  • How it works
    • Architecture
    • DPMM (Proactive Market Making)
    • Oracle
    • External Custody
    • Funding Fee
    • Leverage
    • Margin Requirement
    • Open Interest
    • Liquidation
    • Mining (AMM Liquidity Mining)
    • Limit Orders and Stop Orders
  • Governance
    • Deri Improvement Proposal (DIP)
  • Library
    • Derivative Products
    • Whitepaper
    • Code Audits
    • Tokenomics
    • List of Smart Contracts
    • Referral Program
    • Social Links & Media
    • Bridge
    • Trade on Demo Testnet
    • Academy
      • General
        • What are derivatives in DeFi?
        • What are the 3 biggest mistakes of trading derivatives?
        • Four tips for your trading
      • Perpetual Futures
        • General Intro about Perpetual Futures
        • How to Arbitrage
      • Everlasting Options
        • Introducing EverLasting Options
        • Numerical Examples of Everlasting Option Pricing
      • Power Perpetuals
        • Introducing Power Perpetuals
        • Hedging Impermanent Loss with Power Perpetuals (1)
        • Hedging Impermanent Loss with Power Perpetuals (2)
      • Gamma Swap
        • Introducing Gamma Swap
        • Gamma Swap by Deri Protocol
        • Hedging Impermanent Loss with Gamma Swap
        • A New Transaction Fee Algorithm for Gamma Swap
    • Glossary
    • ℹ️FAQs
      • Trading FAQ
        • Perpetual Futures
        • Everlasting Options
      • Mining FAQ
      • Mini-App FAQ
  • DEVELOPERS
    • How to find the Token ID associated with your account
    • Ideas to build
  • Support
    • Submit a question
    • Bug Report & Suggestions
    • Brand Asset
Powered by GitBook
On this page
  • The out-of-money scenario
  • The at-the-money scenario
  • The In-the-money scenario

Was this helpful?

  1. Library
  2. Academy
  3. Everlasting Options

Numerical Examples of Everlasting Option Pricing

PreviousIntroducing EverLasting OptionsNextPower Perpetuals

Last updated 3 years ago

Was this helpful?

We have proved the following pricing formulae for everlasting options under the BSM assumptions.

Let's divide the theoretical prices of everlasting call and put options, CeverC^{ever}Ceverand PeverP^{ever}Pever, into intrinsic value and time value:

Cever=max⁡(S−K,0)+TimeValuecallPever=max⁡(K−S,0)+TimeValueput\begin{align*}&C^{ever}=\max(S-K,0)+TimeValue_{call}\\&P^{ever}=\max(K-S,0)+TimeValue_{put}\\\end{align*}​Cever=max(S−K,0)+TimeValuecall​Pever=max(K−S,0)+TimeValueput​​

The call and put options at the same strike have the same time value

TimeValuecallTimeValue_{call}TimeValuecall​ = TimeValueputTimeValue_{put}TimeValueput​= VVV, given by

V={Ku(SK)1−u2,if S⩾KKu(SK)1+u2,if S<KV= \begin{cases} \frac{K}{u}\left(\frac{S}{K}\right)^{\frac{1-u}{2}}, & \text{if}\ S\geqslant K\\ \frac{K}{u}\left(\frac{S}{K}\right)^{\frac{1+u}{2}}, & \text{if}\ S<K \\ \end{cases}V={uK​(KS​)21−u​,uK​(KS​)21+u​,​if S⩾Kif S<K​

Where u=1+8σ2Tu= \sqrt{1+\frac{8}{\sigma^2T}}u=1+σ2T8​​.

The details of the math can be found in this . Here we provide some numerical examples. Let’s take the BTCUSD-50000-CALL with 7Day funding period as an example and assume volatility = 100%:

T=7DK=50000σ=100%\begin{align*} &T = 7D\\ &K = 50000\\ &\sigma=100\% \end{align*}​T=7DK=50000σ=100%​

Then we have the key intermediate variable

The out-of-money scenario

Therefore, the theoretical price of this 50000-Call is

Every day, a long (short) position of 1BTC of this EO pays (receives)

The at-the-money scenario

Therefore, the theoretical price of this 50000-Call is

Every day, a long (short) position of 1BTC of this EO pays (receives)

The In-the-money scenario

Therefore, the theoretical price of this 50000-Call is

Every day, a long (short) position of 1BTC of this EO pays (receives)

u=1+8100%2×7/365=20.4485u=\sqrt{1+\frac{8}{100\%^2\times7/365}}= 20.4485u=1+100%2×7/3658​​=20.4485

Assuming BTCUSD = 40000, then we have intrinsic value I=0I=0I=0, and time value

V=5000020.4485(4000050000)1+20.44852=223.3667V=\frac{50000}{20.4485}\left(\frac{40000}{50000}\right)^\frac{1+20.4485}{2}= 223.3667V=20.448550000​(5000040000​)21+20.4485​=223.3667
C=I+V=223.3667C=I+V=223.3667C=I+V=223.3667
(C−I)/7=31.9095(C-I)/7=31.9095(C−I)/7=31.9095

Assuming BTCUSD = 50000, then we have intrinsic value I=0I=0I=0, and time value

V=5000020.4485(5000050000)1+20.44852=2445.1621V=\frac{50000}{20.4485}\left(\frac{50000}{50000}\right)^\frac{1+20.4485}{2}= 2445.1621V=20.448550000​(5000050000​)21+20.4485​=2445.1621
C=I+V=2445.1621C=I+V= 2445.1621 C=I+V=2445.1621
(C−I)/7=349.3089(C-I)/7= 349.3089(C−I)/7=349.3089

Assuming BTCUSD = 60000, then we have intrinsic value I=60000−50000=10000I=60000-50000=10000I=60000−50000=10000 , and time value

V=5000020.4485(6000050000)1−20.44852=415.2673V=\frac{50000}{20.4485}\left(\frac{60000}{50000}\right)^\frac{1-20.4485}{2}= 415.2673V=20.448550000​(5000060000​)21−20.4485​=415.2673
C=I+V=10415.2673C=I+V=10415.2673C=I+V=10415.2673
(C−I)/7=(10415.2673−10000)/7=59.3239(C-I)/7=(10415.2673-10000)/7= 59.3239(C−I)/7=(10415.2673−10000)/7=59.3239
article